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ABSTRACT 

We compare official population projections with Bayesian time series forecasts for 
England and Wales. The Bayesian approach allows the integration of uncertainty in 
the data, models and model parameters in a coherent and consistent manner. Bayesian 
methodology for time-series forecasting is introduced, including autoregressive (AR) 
and stochastic volatility (SV) models. These models are then fitted to a historical time 
series of data from 1841 to 2007 and used to predict future population totals to 2033. 
These results are compared to the most recent projections produced by the Office for 
National Statistics. Sensitivity analyses are then performed to test the effect of 
changes in the prior uncertainty for a single parameter. Finally, in-sample forecasts 
are compared with actual population and previous official projections. The article 
ends with some conclusions and recommendations for future work.  
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1. Introduction  

 

In recent years, there has been an increasing emphasis by national statistical offices to include 

uncertainty in their official population projections so that the user community has a more realistic 

sense for what future might hold. For most national statistical offices this has involved the inclusion 

of several plausible (deterministic) projection variants based on assumptions regarding future 

fertility, mortality and migration in a cohort-component population projection framework. In this 

paper, we focus on the issues and practicalities of including uncertainty from a probabilistic 

viewpoint. 

In the 1990s, there were several convincing papers arguing for the need to move away 

from variant-style projections to probabilistic ones (see, e.g., Ahlburg and Land 1992; Lee and 

Tuljapurkar 1994; Lutz 1996; Bongaarts and Bulatao 2000). The advantages are clear. 

Probabilistic projections specify the likelihood that a particular future population value will occur. 

With variant projections, on the other hand, the user has no idea how likely they are. Here, the 

users have to trust that the experts have provided them with plausible scenarios representing the 

“most likely” and the “extreme” high and low possibilities.  

Despite the clear advantages of a probabilistic approach and the abundance of applications 

(Wilson and Rees 2005, p. 342), nearly all national statistical offices in the world still rely on 

deterministic variant projections to provide uncertainty (Lutz and Goldstein 2004). However, 

progress is being made. The Office for National Statistics (ONS), for example, has been recently 

testing probabilistic models for use in its official projections (Rowan and Wright 2010), although 

their framework for including uncertainty has yet to be fully defined.  

 Uncertainty in population projections come from four main sources: the projection model(s), 

parameter estimates, expert judgments and historical data (Alho and Spencer 2005, pp. 238-240). 

Uncertainty can also be based on the results of past projections (Keilman 2001, 2008). In this 

paper, we show how historical observations and model assumptions influence uncertainty, as well 

as the inclusion of expert beliefs regarding future patterns. We do this by applying various 

autoregressive time series models to population growth rates in England and Wales. Population 

forecasts are based on past patterns, where a long time series of data are very valuable for 

assessing our uncertainty for the future.  

In nearly all of the probabilistic literature on population forecasting, the approach has been 

from a frequentist (classical) perspective. We introduce a Bayesian approach, which offers 

population forecasters the most flexibility in terms of specifying uncertainty. Unlike frequentist 

models, Bayesian models allow for the integration of uncertainty expressed in prior distributions, 

empirical data and expert judgements. However, these models have yet to be widely applied in the 

population forecasting literature (see Section 2).  

As this work is written for a general audience, we have left out the technical details of the 

models used to produce the Bayesian time series forecasts. For those interested in the 
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specification of these models, refer to Abel et al. (2010). Also, note that this work represents some 

of the early efforts carried out by a team of researchers in the ESRC Centre for Population for 

Population Change. In the future, we plan to expand these ideas to more complex population 

models that include, for example, age, sex and state transitions that a population experiences (e.g., 

residential, marriage, employment).  

In terms of structure, we first provide a review of standard population projection approaches 

and describe the current approach of the ONS. This is followed by a section outlining the Bayesian 

approach to time series forecasting. We then compare our forecasts with official projections by 

ONS and to alternative forecasts based on a different prior assumption and shortened time series. 

Finally, we end the paper with some conclusions and recommendations for future work.  

 

2. A Review of Population Projection Approaches 

 

Various typologies of macro-level population projection methods can be obtained by applying some 

simple criteria. In this brief review, we focus on three of them: dimensionality of the problem under 

study (simple extrapolations of population size or growth rates, single-regional cohort-component 

models and multi-regional models), the approach to uncertainty (deterministic versus stochastic) 

and methodology (data-driven versus expert-driven). For simplicity, we assume that expert-driven 

methods encompass projections based on theories and expectations about the future. More 

detailed typologies can be found in Willekens (1990), de Beer (2000), O’Neill et al. (2001), Wilson 

and Rees (2005), Booth (2006) and Bijak (forthcoming). 

With respect to the dimensionality of population projections, the simplest models rely on the 

extrapolations of population size, population growth rates or crude rates related to particular 

components of demographic change (fertility, mortality and migration). Adding the dimension of 

age (and sex) leads to the cohort-component framework of population accounting, developed by 

Leslie (1945). Cohort-component models are extendable by adding additional dimensions, such as 

spatial regions, as suggested by Rogers (1975) in his seminal work on multi-regional demography, 

or subgroups, such as ethnicity (Rees 2008). Here, ‘multi-regional’ refers to all multidimensional 

extensions of the cohort-component model, including other multi-state models (see also Land and 

Rogers 1982; Schoen 1988, 2006; Rogers 1995).  

Another feature characterising any method of population projection is the approach to 

uncertainty. Uncertainty in projections can be ignored, described using various plausible scenarios 

or quantified using probabilities (de Beer 2000). The deterministic scenarios can be data-driven, 

i.e., based on simple mathematical extrapolations of past trends, or expert-driven, i.e., relying 

mainly on expert judgement (Bijak forthcoming). Similarly, stochastic (probabilistic) projections can 

be based on time series analysis or extrapolation of past projection errors (e.g. Alho and Spencer 

2005), or based on expert opinion used to assess the future uncertainty (e.g. Lutz 1996). The 

Bayesian methodology, advocated throughout this paper allows for combining both features in a 
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coherent and consistent way. So far, only a handful population forecasts have been prepared 

within the Bayesian framework (Daponte et al. 1997; Heilig et al. 2010). 

 

 

Box 1. Proposed Bayesian Methods and the Practice of the ONS Population Projections 

 

 

 

Source: Own elaboration. For more detailed typologies, see Willekens (1990),  

de Beer (2000), O’Neill et al. (2001), Booth (2006) and Bijak (forthcoming) 

 

 

 The current official population projections for England and Wales produced by the Office for 

National Statistics (ONS) represent results from a deterministic model with uncertainty, not 

quantified in terms of probabilities, but denoted by various plausible scenarios (see, e.g., ONS 

2009). Recently, promising attempts were undertaken to produce expert-based stochastic 

population projections for the United Kingdom (Rowan and Wright, 2010). Both the current and 

probabilistic work of the ONS is indicated in the ‘methodology cube’ in Box 1 using patterns and an 

asterisk, respectively. 

The philosophy of Bayesian statistics enables the combining of data- and expert-based 

approaches within a common, stochastic framework. Results are presented in this paper for a 

simple, extrapolative example (darker shading in Box 1), but our approach can be extended to 

include cohort-components, and eventually multi-regional cases (lighter shading). In this way, we 

believe that the Bayesian approach can complement the methodological developments currently 

undertaken within the Office for National Statistics (Rowan and Wright, 2010).  
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3. The Uncertainty of the Future UK Population 

 

Bayesian time series models for population forecasting are introduced in this section. First, we 

present the methodology for Box-Jenkins time series models. This includes transformations to data, 

autoregressive models for the mean process and stochastic variance models for observed data 

with a non-constant variance over time. Second, Bayesian methods for estimating parameter 

values are discussed. Here, the specification of prior distributions and model uncertainty represent 

the main focus. Note, for more details about the models and parameter estimation, the reader is 

referred to Abel et al. (2010).  

 

3.1 Time Series Modelling of Annual Population Series 

Annual time series of population totals often display some form of trend or fluctuations over long 

time periods. To illustrate, consider the mid-year population estimates (including military personnel) 

obtained from the Human Mortality Database (http://www.mortality.org/) for England and Wales 

from 1841 to 2007, presented in the top panel of Figure 1. This plot clearly illustrates an increasing 

trend with the population rising from 15.8 million in 1841 to 53.9 million in 2007.  

Time series models for population forecasting usually concentrate on the rates of 

population growth over time, rt, provided in the second panel of Figure 1. For this work, the growth 

rates are calculated as 

11
−=

+

t

t

t
p

p
r ,           (1) 

where pt is the population total at time t. A standard requirement for fitting time series models is 

that the data must exhibit (weak) stationarity. This implies that both the mean and the variance of 

the data are constant over time. These properties are not present in the historical series of rt 

shown in the middle panel of Figure 1. Instead, the series exhibits a downward trend, caused 

predominantly by falls in mortality and fertility rates from pre-industrial levels.  

Experience suggests that if we are to use time series models which assume stationarity, 

transformations of the data may be required (Chatfield 2004, p. 26). Once such transformation is to 

take the differences in rt, i.e,  

1−−= ttt rry ,            (2) 

and to model them instead. A plot of yt is provided in the bottom panel of Figure 1, where a 

constant mean level, close to zero, is clearly illustrated. The plot also demonstrates peaks during 

some noticeable historical events, such as the two World Wars and the 1918 influenza pandemic, 

which had dramatic effects on the change in annual rate of growth. These events may lead one to 

the conclusion that, although the series of yt has a constant mean, it cannot be considered to be 

completely stationary as the variance appears non-constant over time. Models to account for this 

feature are outlined later in this section. 
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Figure 1: England and Wales Population Data, 1841-2007 
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Autoregressive (AR) models have a long history of being used to forecast populations (see, 

e.g., Saboia 1974; Ahlburg 1987; Pflaumer 1992; Alho and Spencer 2005). The key feature of AR 

models is the inclusion of parameters for the regression of variables such as yt, on previous values 

of itself, yt-j, where j represents the time lag. This is commonly known as autocorrelation. AR 

models can include multiple parameters for autoregression at different time lags. Foe example, an 
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AR model of order 3 is denoted as AR(3) and has autoregressive terms at lag 1, 2 and 3. Time 

series models also tend to have a parameter for the mean level of the process, represented by µ.  

Once fitted, AR models can be used to forecast future values of the time series process. If 

the process considered is the change in population growth rates, yt, (as in this paper), future 

values of the original population growth rates, rt, can be derived by re-arranging Equation (2). In 

our case, the last observed population total is p2007 (Figure 1). Based on these data, we can derive 

a series of population growth rates up to r2006 and changes in population growth rates up to y2006. 

Thus the first step- ahead forecast from an AR model, y2007, can then be used to obtain  

200620072007 ryr −= .           (3) 

From this, we can derive the forecast of p2007 by re-arranging Equation (1) as 

 200720072008 )1( prp += .           (4) 

Subsequent values of rt and pt may be calculated in the same manner, using the forecasted yt 

estimated from the model. 

As noted previously, historical time series of demographic data often exhibit some volatility 

due to events such as epidemics, wars or baby booms. This is certainly true for the data set out in 

Figure 1. Stochastic Volatility (SV) models allow for a non-constant variance when modelling time 

series data. This is done by specifying a time-dependent model for the variance, as well as the 

mean. Consequently, SV models can account for heterogeneity found in the demographic data, 

allowing forecasts to be adjusted according to the level of volatility estimated at the time the 

projection is made.  

 

3.2 Bayesian Time Series Methods 

The estimation of parameters in time series models can be undertaken using a number of different 

methodologies. In this paper we use a Bayesian methodology because both expert opinion and 

uncertainty in model choice can be included. See Box 2 for an introduction to Bayesian inference.  

The incorporation of expert opinion has become an increasingly important input into the 

prediction of future populations (e.g., Rowan and Wright 2010). Bayesian methods allow these 

opinions to be fully incorporated into the estimation procedure by specifying prior distributions in 

relation to the model parameters. The distributions can be set to ‘flat’ if the expert does not have 

any notions about what the parameter values should be. This results in parameter estimates that 

are very similar to those fitted in using classical statistical methods. On the other hand, if the expert 

does have some beliefs about what particular parameter values should be, then that person can 

specify a distribution centred on these values and incorporate them directly into the estimation 

procedure. The result is parameter estimates that reflect the combination of the expert’s prior 

beliefs and the empirical data. 
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Box 2. Bayesian Inference in a Nutshell 

The Bayesian approach to statistical inference dates back to the seminal work of an English 

nonconformist clergyman, Rev. Thomas Bayes (1763). The essence of Bayesian inference 

consists of updating prior distributions about the model parameters θ in the light of some empirical 

data x. The combination of the two results in a posterior distribution.  

The prior distributions reflect the knowledge or belief of a researcher in different values of θ, 

without taking the data into account. The prior distributions can be either informative, or rather 

vague, as it is the case for ‘flat’ distributions (see the stylised example below). Formally, the Bayes 

theorem can be written using probability distributions, as: 

)(

)|()(
)|(

xp

xpp
xp

θθ
θ

⋅
= . 

Here, )|( xp θ  is the posterior distribution, )(θp  is the prior, and )|( θxp  denotes the likelihood of 

data. 

Example: In order to illustrate the effect of alternative prior assumptions we simulated 20 

observations from a Normal distribution with unknown mean 0.5 and standard distribution of 0.5. 

We then attempted to re-estimate the mean using two alternative prior assumptions. In the first 

case we used a normal distribution with mean 0 and standard deviation of 0.2. The resulting 

posterior distribution is shown in the top panel of the plot below.  
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In the second case we assumed a Uniform distribution with a lower bound of -1.5 and an upper 

bound of 1.5.  The resulting posterior distribution is shown in the bottom panel of the plot.   

Comparison of the two plots shows how a posterior distribution can become narrower and alter in 

central tendency when an informative prior is included.  

 

This feature can be of great benefit in forecasting population. For example, the future mean in a 

time series model based on past data may suggest an annual growth rate of 0.5 percent. This may 

be different to that expected by demographic experts (who may for example expect a future mean 

annual growth rate of zero).  Hence, the inclusion of their opinions as informative prior can help 

direct the parameter estimate of the mean level, for which model forecasts are based on, away 

from the an estimate that is based on the data and a uninformative, flat prior. 

   

 

Uncertainty in model choice can be incorporated in Bayesian models using probability 

distributions representing each model’s likelihood of fitting the data. This allows the forecasts to be 

averaged across a range of plausible models, rather than a single model being selected, as is the 

common practise in classical statistics. The ability to average across a set of plausible models is 

advantageous as it is unrealistic for any particular model to be the only one to base forecasts on. 

Bayesian model averaging can also operate across models that are non-nested, such as between 

AR models and SV models. For the estimation of Bayesian SV models, refer to Meyer and Yu 

(2000), Congdon (2001) and Jacquier (2003). Finally, the incorporation of model uncertainty can 

be directly integrated with parameter uncertainty, resulting in more realistic probabilistic population 

forecasts.  

Recently, computation of Bayesian modelling has become easier as computational power 

has become more readily available and introduction of the WinBUGS software. The later has 

allowed users to estimate posterior distributions easily and quickly, without having to program 

complex Markov chain Monte Carlo (MCMC) routines. For example, only a few lines of code are 

required to set up an AR model and state the prior distributions of the model parameters. Posterior 

distributions of parameters from a converged sample of an MCMC chain can be obtained with a 

number of seconds on a standard desktop computer. 

 

4. Comparisons of Forecasts 

 

In this section, results of forecasts from Bayesian time series model fitted to the historical data in 

Figure 1 are presented and compared with several official population projections. First, we 

compare our model averaged forecasts to the latest ONS scenario-based projections. We then 

revise our model averaged forecasts by adding expert opinion for a single parameter to better 

understand the effect of changing from a flat prior distribution to an informative one (see also Box 
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2). In the last section, we compare our Bayesian time series forecasts on several shortened data 

series against past official projections and to the actual observations.  

 

4.1 Model Averaged Forecasts 

For the Bayesian time series forecasts, we consider eighteen models for the differenced population 

growth rate, yt, which are the same as those described in Abel et.al. (2010). These consist of an 

independent normal (IN) model (with just a mean parameter and no autoregressive terms) and 

eight AR models (with non-zero means) that increase in order from AR(1) to AR(8). Nine more 

models with additional terms to control for stochastic volatility in yt were also considered. This 

range of models was selected in order to represent all possible autoregressive processes that 

might adequately describe the differences in the overall growth rate series. As we had no previous 

knowledge about the nature of the parameters in each model we assigned non-informative prior 

distributions. We also provide equal priors each model.  

 

Table 1: Posterior Model Probabilities for Eighteen Models Fitted for Data Series with 

Different End Points 

 
Model Posterior Model Probabilities 

 1957 1967 1977 1987 1997 2007 

IN 0.00054 0 0 0 0 0 

AR(1) 0.00021 0 0 0 0 0 

AR(2) 0.00067 0 0 0 0 0 

AR(3) 0.00147 0.00001 0 0 0 0 

AR(4) 0.00051 0 0 0 0 0 

AR(5) 0.00036 0 0 0 0 0 

AR(6) 0.00006 0 0 0 0 0 

AR(7) 0.00001 0 0 0 0 0 

AR(8) 0 0 0 0 0 0 

IN-SV 0.29967 0.49045 0.74872 0.79542 0.67155 0.79833 

AR(1)–SV 0.23621 0.18083 0.18004 0.11968 0.12038 0.07126 

AR(2)–SV 0.03650 0.03367 0.01731 0.01656 0.03123 0.01762 

AR(3)–SV 0.39972 0.27773 0.05032 0.06229 0.16113 0.10025 

AR(4)–SV 0.02240 0.01570 0.00321 0.00551 0.01436 0.01127 

AR(5)–SV 0.00152 0.00148 0.00038 0.00049 0.00123 0.00117 

AR(6)–SV 0.00014 0.00011 0.00003 0.00003 0.00011 0.00008 

AR(7)–SV 0.00001 0 0 0 0.00001 0.00001 

AR(8)–SV 0 0 0 0 0 0 
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The posterior distributions of the Bayesian time series forecasts can be summarised in a number of 

ways. In this section, we focus on summaries of the posterior distributions at two levels: the model 

probabilities and the joint predicted posterior distributions for future values of rt and pt.  

The posterior model probabilities of the eighteen Bayesian time series forecasts fitted to the 

entire series of yt are provided in the last column of Table 1. The results indicate strong support, 

with a model probability of 0.79833, for the independent normal with stochastic volatility term (IN-

SV). This model has only a single mean term for the mean level of change in population growth 

rate (with no autoregressive terms) alongside a model to control for the volatility shown in the data. 

The next most likely model is the AR(3)-SV model, followed by the AR(1)-SV. These models 

indicate that there is a small degree of support in the data for models that include terms for 

autoregression at lags 3 or 1. All SV models with higher order AR terms, in addition to the models 

with constant variance terms, appear very unlikely with model probabilities below 0.01. 

Given the posterior model probabilities from all eighteen models, the joint predictive 

posterior distribution for future yt up to 2032 was estimated. This provided a sample of 10,000 

observations of future yt values. These were then transformed to obtain the joint predicted 

distributions of future rt and pt using Equations (3) and (4), updated for each subsequent year. The 

results are presented in the left and right panels of Figure 2, respectively. Each shade of the  

 
Figure 2: Joint Predictive Probability Distribution of the Model Averaged Growth Rates (left) 

and Resulting Population Forecast in Millions (right). 
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forecasted fan in these plots represents a single percentile of the estimated posterior density, 

where the darkest shades correspond to most central values and the lighter shades to the tails of 

the distribution. Contour lines are also plotted at each decile and at the 1st and 99th percentiles. 

From these forecasts, the median predictive population in 2033 was 64.0 million. Numerous 

measures of uncertainty are also available. For example, in 2033, the 20th percentile is 59.0 million 

persons and the 80th percentile is 69.4 million persons. In other words, our forecasts predict a 60% 

probability that the 2033 population will fall between these two numbers.  

Summaries of the predictive probability distributions can be compared with national 

projections. In the United Kingdom, the Office for National Statistics (ONS) regularly prepare a set 

of projected total populations based on cohort component methodology under a range of 

deterministic scenarios. For this study, we compare our results with the three variants (i.e., 

principal, high and low) published in the latest set of projections for England and Wales (Wright 

2010). All three variants were based on sets of demographic trend-based assumptions for future 

fertility, mortality and net migration. The principal variant relies on assumptions considered to best 

reflect demographic patterns at the time they were adopted. The high (or low) population variant 

assumes a combination of high (or low) fertility, life expectancy and net migration, and is intended 

to provide users with a better sense of the plausible future uncertainty in population change. All 

three variants of population totals are displayed on the right hand panel in Figure 2. In the left 

panel, the derived values of rt, calculated using Equation (1), and the future values of pt are shown. 

The central, dot-dashed lines represents the principal projections, whilst the upper and lower 

dashed line represent the high and low population variants, respectively.  

The panels in Figure 2 illustrate a number of differences between the ONS principal 

projection and that of our model averaged forecasts. First, the uncertainty in the ONS rate, 

represented by their high and low variants, is smaller than that of our model averaged forecasts at 

all points of time. Second, the uncertainty in the rate of population growth of the ONS projection 

does not increase substantially over time, unlike those derived using probabilistic methods. Third, 

the ONS principal population projection in 2033 of 63.7 million is slightly lower than our model 

averaged median (64.0 million), despite a reduction in the rate away from the median of the model 

averaged forecast towards the end of the horizon. Finally, the high and low variants in the 

projected population totals by the ONS lie within the 77th and 24th percentiles of the posterior 

predictive distribution of the 2033 population forecasts. In earlier forecast years, the population 

totals from the high projection scenario are greater than our 80th percentile. The projected 

population totals from the lower variant, on the other hand, never fall below our 20th percentile.  

 

4.2 Sensitivity to Alternative Prior 

The forecasts presented in the previous section assumed flat prior distributions for all parameters. 

In this section, we analyse the sensitivity of the posterior parameter estimates and model 

probabilities to the introduction of an informative prior. This is conducted by changing only the 



 12 

mean level of yt (i.e., µ). This term also represents the annual mean level of increase (or decrease) 

in rt and is present in all eighteen models. In previous forecasts we assigned a non-informative 

prior distribution of µ ~ N(0, 100), where N denotes a Normal (Gaussian) Distribution with mean 0 

and variance 100.  

To establish an informative prior, we used the ONS 2008-based principal, high and low 

projections to derive each variant’s values for rt and yt from 2007 to 2032. The mean of the 

principal projection yt (-0.000065) was used as the mean of new formative prior distribution. For the  

 

Table 2: Posterior Means (and Standard Deviations) of µ for 18 Models under Two 
Alternative Prior Assumptions 

 
µ Parameter Model Probabilities Model 

 
 

Flat Prior 
 

Informative 
Prior 

Flat Prior 
 

Informative 
Prior 

-0.00003 -0.00006 
IN 

(0.00017) (0.00009) 
0 0 

-0.00003 -0.00006 
AR(1) 

(0.00017) (0.00008) 
0 0 

-0.00004 -0.00005 
AR(2) 

(0.00016) (0.00007) 
0 0 

-0.00006 -0.00005 
AR(3) 

(0.00016) (0.00007) 
0 0 

-0.00007 -0.00005 
AR(4) 

(0.00016) (0.00006) 
0 0 

-0.00008 -0.00005 
AR(5) 

(0.00016) (0.00006) 
0 0 

-0.00009 -0.00005 
AR(6) 

(0.00016) (0.00006) 
0 0 

-0.00009 -0.00005 
AR(7) 

(0.00016) (0.00006) 
0 0 

-0.00009 -0.00005 
AR(8) 

(0.00016) (0.00006) 
0 0 

0.00004 0.00000 
IN-SV 

(0.00008) (0.00006) 
0.79833 0.74962 

0.00004 0.00000 
AR(1)–SV 

(0.00008) (0.00006) 
0.07126 0.05314 

0.00005 0.00001 
AR(2)–SV 

(0.00008) (0.00006) 
0.01762 0.01431 

0.00006 0.00002 
AR(3)–SV 

(0.00007) (0.00006) 
0.10025 0.16832 

0.00006 0.00002 
AR(4)–SV 

(0.00007) (0.00006) 
0.01127 0.01332 

0.00006 0.00002 
AR(5)–SV 

(0.00008) (0.00006) 
0.00117 0.00118 

0.00006 0.00001 
AR(6)–SV 

(0.00008) (0.00006) 
0.00008 0.00011 

0.00006 0.00001 
AR(7)–SV 

(0.00008) (0.00006) 
0.00001 0.00001 

0.00005 0.00002 
AR(8)–SV 

(0.00007) (0.00006) 
0 0 
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variance, the means of the high (-0.000177) and low (-0.000035) variants of yt  were assumed to 

represent the 80th and 20th percentiles, respectively. After a search amongst candidate distributions 

we found the µ ~ N(-0.000065, 0.00012) to approximately meet this criteria.  

Given the informative prior, we calculated the corresponding posterior distributions for the 

parameter estimates and model probabilities. The resulting mean and standard deviations of the 

posterior distributions of the µ parameter in each model are shown in the second column of Table 2, 

alongside the original values under the flat prior assumption.  

The AR models with informative priors exhibited mean values of µ similar to those with flat 

priors, albeit with reduced standard deviations. However, in the SV models, the mean values of µ 

became much closer to zero. The last two columns in Table 2 contain the posterior model 

probabilities for two models with alternative prior assumptions of µ. Here, we see that the posterior 

model probabilities of the informative prior remained fairly similar to the models with the flat prior 

assumptions. 

To understand the effects introducing informative priors on the future population growth 

rates and population totals, the predictive posterior distributions resulting from both model 

assumptions are plotted in Figure 3. As expected, the two plots on the right illustrate a reduced 

amount of uncertainty in comparison to the predictive posterior probability distributions obtained 

from the flat prior assumption (on the left side). For example, the 20th and 80th percentiles of p2033 

were 58.9 million and 69.3 million, respectively, when the flat prior was used compared to 58.2 

million and 68.3 million, respectively, when the informative prior was used. In addition, the median 

of the predictive posterior probability distribution reduced from 0.00733 for r2032 from the flat priors 

to 0.00619 from the informative priors. Consequently, the median of p2033 also falls from 64.0 

million to 63.1 million. 

 

4.3 In-sample Forecasts 

To asses the performance of the Bayesian time series methods, in-sample forecasts (using flat 

priors) were conducted by using five shortened data sets with end points at 1957, 1967, 1977, 

1987 and 1997 respectively. The results of these forecasts are compared against both past official 

population projections obtained from the Government Actuary Department website 

(http://www.gad.gov.uk) and actual observations.  

The posterior model probabilities from our forecasts with shortened series are present in 

Table 1, alongside the model probabilities for those based on the full length data series ending in 

2007. As one would expect, the forecasts based on longer time series have similar model 

probabilities as those based on the full data, with large support for the IN-SV model. In the shorter 

data series forecasts, with end points in 1957 and 1967, more support is given to models that 

include autoregressive terms. This is most notable for the data with the end point in 1957, where 

the AR(3)-SV model has the highest model probability (0.39972).  
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Figure 3: Comparison of Predictive Posterior Probability Distributions of the Population Growth 

Rates (top) and Population (bottom) for Flat (left) and Informative (right) Prior Distributions 
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The model averaged posterior predictive distributions of pt for each of the shortened data 

series, along with the previously presented forecast from full data series (ending in 2007) are 

shown in Figure 4. For the shortest series, with last observation in 1957, the median of the 

population forecast in the 2033 predictive distribution is 45.8 million. As we move sequentially 

through the results from data sets of increasing length, the median of the p2033 distribution 

increases to 61.9 million for the 1967 data set, falls to 37.6 million for the 1977 data set, and then 

increases to 51.0 million to 56.0 million to 64.0 million in the 1987, 1997 and 2007 data sets,  

respectively. 

There are a number of noticeable conclusions that can be drawn when comparing the 

forecasted posterior distributions with the actual data and GAD projections, represented by the 

solid black line and dot-dashed line, respectively, in Figure 4. The median of the forecasted 

posterior distributions based on the 1957 data consistently underestimated the actual population. 

This error was greatest during the early part of the forecast horizon where the actual population 

strays into the upper tails of our posterior distributions. However, this error improves, especially 

during the late 1980’s when the population total moves towards the centre of our posterior 

distributions. In 2007, the England and Wales population was 53.9 million, which is within the 61st 

percentile of our p2033 posterior distribution. The GAD projection of 1957 suffers a very similar 

pattern of errors as our medians.   

The median of our forecasts based on the 1967 data consistently overestimate the 

population. The error is greatest in the early part of the forecast where the growth rate of the actual 

population quickly deceases (see Figure 1). As with the 1957 based projection the error improves 

in the later part of the forecast horizon, with the 2007 observed population lying within the 39th 

percentile. The GAD projection made in 1967, overestimates the actual population to a greater 

extent than our forecast, consistently following the 70th percentiles of our posterior distributions of 

pt.  

The forecasts based in the 1977 data suffer the largest errors of all the in-sample data sets. 

The actual population consistently remained in the upper tail, between the 80th and 90th percentiles 

of our posterior distributions, with the 2007 observed population lying within the 85th percentile. 

This large error is due to a combination of factors. First, the data series for rt exhibit a turning point 

in the early 1980’s, when the population began to increase once more. Second, unlike previous 

forecasts for shorter data series, large posterior model probabilities where estimated solely for the 

IN-SV model. As a result, there is a large reliance of the median forecasts on the µ parameter in 

this model. In addition, there is a lack of autoregressive parameters to temper the trend effect in 

the mean process, unlike the 1957 and 1967 based forecasts. The GAD projection in 1971 also 

underestimated the actual population, but with less error compared to the median of our posterior 

distributions.  

Both the 1987 and 1997 based forecasts underestimate the actual populations, with the 

2007 observed population lying within the 71st and 84th percentiles respectively. The 1987 based  
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Figure 4: Sequence of Joint Predictive Probability Distribution of the Population (in millions) 

Forecasts up to 2033, Actual and GAD Projections in the Past Six Decades. 
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forecast closely follows the 70th percentile throughout the comparable forecast horizon, whilst the 

GAD projection follows our 60th percentile. The GAD projection from the 1997 is affected by errors 

in the population estimates before the 2001 census. As the forecast horizon increases, their 

projection becomes closer to our medians of the posterior distributions. 

 

5. Conclusion  

 

In this paper, we have presented a number of population forecasts for England and Wales. Utilising 

Bayesian methods we have introduced uncertainty from multiple sources, including model choice 

and parameter estimation. We believe the resulting forecasts therefore provide a more realistic 

summary of future uncertainty in population forecasts in comparison with equivalent time series 

models fitted using classical methods and current ONS projections.  

Volatility in population growth rates were controlled for using stochastic volatility models, 

which tended to have the highest posterior model probabilities when fitted to historical data. The 

ability to control for volatility may be of importance when considered in the context of cohort 

component projection methods. These methods often require assumptions about future rates of 

population growth components. However, previous authors have noted that the success of these 

assumptions, when comparing their past projections with the actual population, may simply reflect 

the volatility or stability of the respective time series at the time the projections are made (Shaw, 

2007 and Keilman 2007).  

Bayesian methods allow the formal incorporation of explicit judgement embodied in 

informative priors, and hence alter the forecasted population characteristics and their levels of 

uncertainty. The initial forecasts presented in this paper were based on hardly informative flat 

priors and hence resulted in the large level of uncertainty in forecasted population size. This level 

of uncertainty was reduced through the inclusion of more prior information. We derived our 

informative prior from future populations projected by the ONS, which were a based on both expert 

opinion, on the future rates of the components of population change, and cohort-component 

methodology. As an alternative, more informative priors to ours might be included, that are based 

purely upon expert opinions on the future of the population growth rate. These might include 

alterations to our mean parameter prior as well as informative prior distributions for other 

parameters in the model (such as the degree of autocorrelation) and model preferences (such as 

higher prior model weights on SV models). Such prior information will result in further reductions in 

the estimated uncertainty due to added information in the parameter estimation and model choice 

procedures.  

The simple time series models used to produce our population forecasts provided 

alternative estimates to those obtained using cohort component methods. When compared with 

past official population projections the medians from our simple models performed as well, if not 

better. In addition, we were able to provide multiple measures of uncertainty. Our models showed a 
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similar degree of susceptibility to turning points, especially when low posterior probabilities were 

estimated for models with autoregressive terms. This feature might be tempered through the 

inclusion of expert opinion. For example, we might provide higher prior model weights to those that 

include autoregressive terms in comparison to the independent normal models.  

In this paper, we solely focused on modelling the change in the population growth rate. This 

has a number of restrictions when interpreting results. For example, we are unable to provide 

future forecasts for the components of population change or disaggregate future population by age 

and sex groups. We hope to further explore these areas in the future using Bayesian methods 

motivated by the augments provided throughout this paper. In addition, further disaggregation of 

the population growth rate into components is likely to provide more accurate forecasts and further 

improvements in the estimated levels of uncertainty.  

We believe the future of producing population estimates will require more emphasis on 

specifying uncertainty so that more informed decisions can be made by population planners and 

policy makers. The use of time series modelling methods allows a large library of statistical and 

econometric techniques to be applied to meet these demands. The use of the Bayesian approach 

in fitting these models also allows for further extensions over classical estimation methods, leading 

to more realistic forecasts and associated uncertainty measures.  
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